Colin Shea-Blymyer & Houssam Abbas EECS, Oregon State University <u>sheablyc@oregonstate.edu</u> <u>https://web.engr.oregonstate.edu/~sheablyc/</u> <u>http://www.houssamabbas.com/</u>

# Model Checking the Optimal Behavior of Big Markov Processes







#### Robots are making ethical decisions

 1400 autonomous vehicles on roads in the US

• Nurse robots in Japan

Police robots in LA suburb



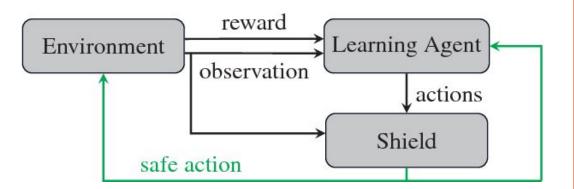


2

# Are they making the right decisions?

#### FAST@MPANY Self-Driving Mercedes Will Be Programmed To Sacrifice Pedestrians To Save The Driver

Mercedes gets around the moral issues of self-driving cars by deciding that-of coursedrivers are more important than anyone else.


#### INSIDER

#### Police robots keep malfunctioning, with mishaps ranging from running over a toddler's foot to ignoring people in distress

https://www.fastcompany.com/3064539/self-driving-mercedes-will-be-programmed-to-sacrifice-pedestrians-to-save-the-driver https://www.businessinsider.com/police-robots-security-malfunctioning-fails-knightscope-2020-1?op=1

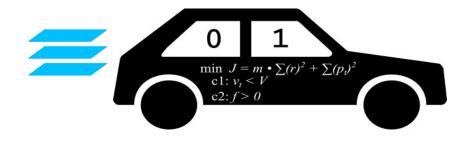
#### How can we get guarantees about norm compliance?

• Safe reinforcement learning\*



• Formal verification

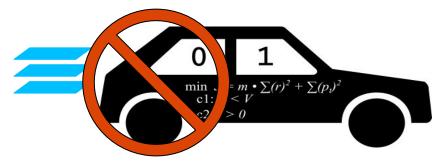



\* Brunke, Lukas, et al. "Safe learning in robotics: From learning-based control to safe reinforcement learning." *Annual Review of Control, Robotics, and Autonomous Systems* 5 (2022): 411-444.

# Outline

- The problem with specifying norms in alethic logics
- The need for deontic modalities
- Expected Act Utilitarian Deontic Logic
- Strategic modalities
- Model checking strategic obligations
- Results

## Specifying behavior in Computational Tree Logic

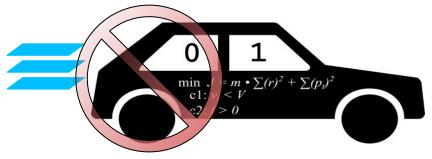

"The car can go 149 mph."



 $m \models \exists \diamond (v=149)$ 

# **Specifying behavior in CTL**

"The car shouldn't go more than 80 mph."

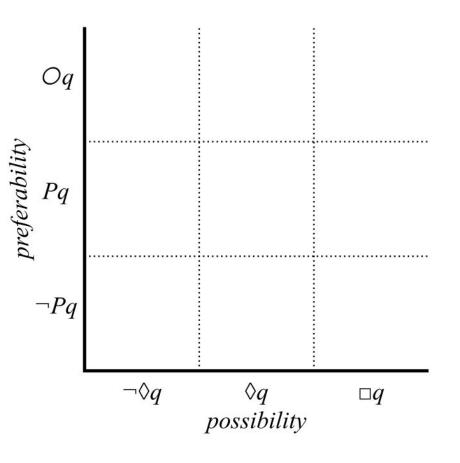



 $m \models \neg \exists \diamond (v > 80)$ 

# **Specifying behavior in CTL**

#### "The car can go 149 mph."

"The car shouldn't go more than 80 mph."




 $m \models \exists \diamond (v=149) \text{ What is possible} \\ m \models \neg \exists \diamond (v>80) \text{ What is preferable} \\ m \models \bot \rightleftharpoons$ 

#### Possible worlds, Preferable worlds

• Alethic logic

• Deontic logic



Logic

*¬speed* Not speeding

## *Temporal* Logic

 $\Box(\neg speed)$ 

Always not speeding

= never speeding

## Act Temporal Logic

 $\alpha$  *cstit*:  $\Box \neg$ *speed* 

The agent acts to ensure that it's never speeding

## Dominance Act Utilitarian Deontic Logic

 $\odot$ [ $\alpha$  cstit:  $\Box \neg$ speed]

By acting optimally,

the agent acts to ensure that

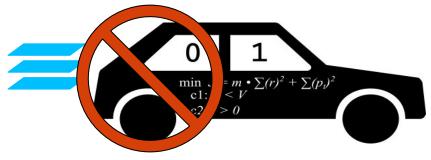
it's never speeding

### Expected Act Utilitarian Deontic Logic

 $\otimes$  [ $\alpha$  cstit:  $P_{>0.2}$  [ $\Diamond$  red]]

By acting optimally,

the agent acts to ensure that


with probability at least 0.2

eventually in red

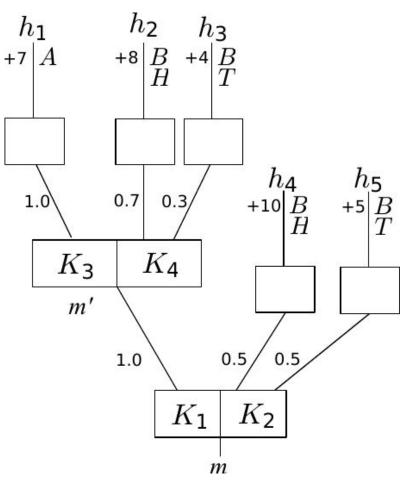
# **Specifying behavior in EAU**

"The car can go 149 mph."

"The car should probably never go more than 80 mph."



 $m \models \alpha \ cstit: \Diamond \ (v=149)$  What is possible  $m \models \otimes [\alpha \ cstit: P_{\geq 0.9}[\Box \neg (v \ge 80)]]$  What is preferable Possible and Preferable specified in the same language!


#### **EAU Semantics**

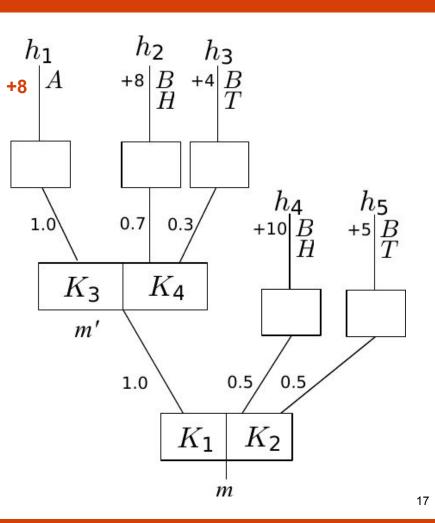
 $Q(K_2) = 10/2 + 5/2 = 7.5$ 

 $Q(K_{1}) = \max\{7, 6.8\} = 7$ 

 $\{K_2\} = E-Optimal_{\alpha}^m$ 

 $m \models \otimes [\alpha \ cstit: B]$  $m \models \otimes [\alpha \ cstit: P_{>0.49} [H]]$ 



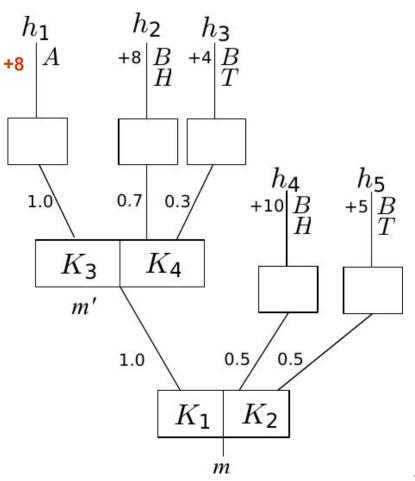

#### **EAU Semantics**

 $Q(K_{\gamma}) = 10/2 + 5/2 = 7.5$ 

 $Q(K_{1}) = \max\{8, 6.8\} = 8$ 

 $\{K_{l}\} = E-Optimal_{a}^{m}$ 

 $m \models \neg \otimes [\alpha \ cstit: A]$ 

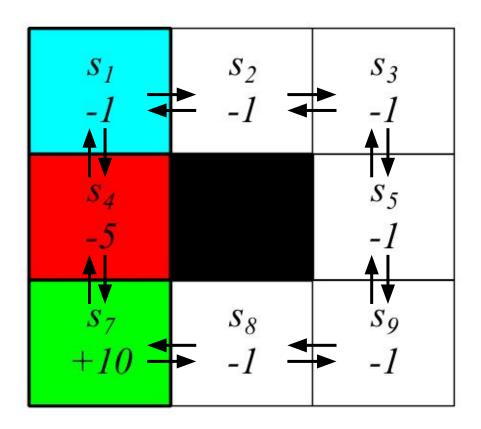



#### EAU Semantics: Strategic *stit*

 $\pi^* = \{K_{l'}, K_{3'}\}$ 

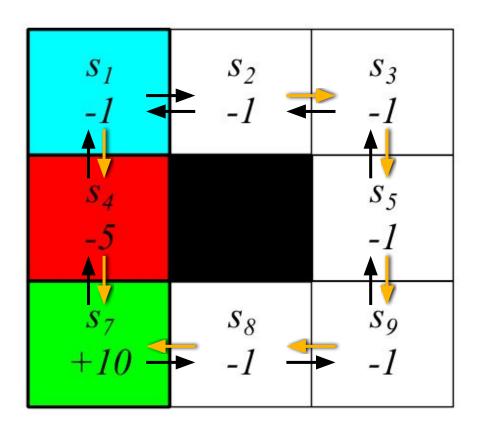
 $m \models [\alpha \pi\text{-stit: } A]$ 

 $m \models \otimes [\alpha \pi\text{-stit: } A]$ 



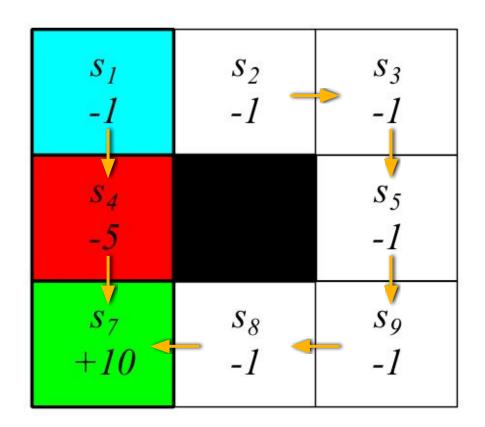

#### Example Obligation in an MDP

Does the agent have the obligation to enter a red state more than 20% of the time?


| -1           | -1      | -1      | -1      | -1      |
|--------------|---------|---------|---------|---------|
| name=15      | name=16 | name=17 | name=18 | name=19 |
| S            |         | -1      |         | +10     |
| D<br>name=10 |         | name=12 |         | name=14 |
| -1           | -1      | -1      | -1      | -1      |
| name=5       | name=6  | name=7  | name=8  | name=9  |
| -10          | -10     | -10     | -10     | -10     |
| name=0       | name=1  | name=2  | name=3  | name=4  |

1. Given an MDP  $\mathcal{M}$ , and a strategic obligation  $\varphi$ 




 $\varphi = \otimes [\alpha \ \pi \text{-stit:} P_{>0.75} [\neg \diamond s = 4]]$ 

- 1. Given an MDP  $\mathcal{M}$ , a policy  $\pi$ , and a strategic obligation  $\varphi$
- 2. Find the optimal policy



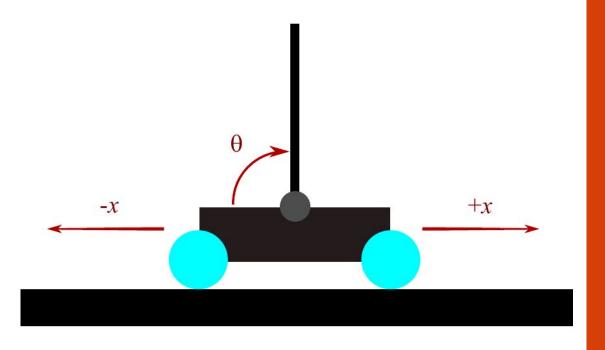
$$\varphi = \otimes [\alpha \ \pi \text{-stit:} P_{>0.75} \ [\neg \diamond s = 4]]$$

- Given an MDP  $\mathcal{M}$ , a policy  $\pi$ , and a strategic obligation  $\varphi$ 1.
- 2. 3.
- Find the optimal policy Remove sub-optimal actions



$$\varphi = \otimes [\alpha \ \pi \text{-stit:} P_{>0.75} \ [\neg \diamond s = 4]]$$

- 1. Given an MDP  $\mathcal{M}$ , a policy  $\pi$ , and a strategic obligation  $\varphi$
- 2. Find the optimal policy
- 3. Remove sub-optimal actions
- 4. Check PCTL




 $\varphi = \otimes [\alpha \pi \text{-stit: } P_{>0.75} [\neg \diamond s = 4]]$ 

### Model checking big MDPs

 $m \models [\alpha \pi\text{-stit:} \Box (\theta \in [72^{\circ}\text{-}108^{\circ}])]$ 

 $m \models \neg \otimes [\alpha \pi \text{-stit:} \Box (\theta \in [72^\circ \text{-} 108^\circ])]$ 



## **Timing Results**

| 2.<br>2.    | formula                     | stit check time (s) | ought check time (s) |
|-------------|-----------------------------|---------------------|----------------------|
| $arphi_1$   | $P_{\geq=0.2}[F(aq0 aq4)]$  | 47.16               | 21.03                |
| $\varphi_2$ | $P_{>=0.00001}[F(aq0 aq4)]$ | 47.10               | 20.73                |
| $arphi_3$   | $P_{\geq=0.1}[Gaq2]$        | 55.42               | 24.63                |
| $arphi_4$   | $P_{<0.7}[Gaq2]$            | 47.83               | 20.80                |
| $arphi_5$   | $P_{<0.7}[F  xq0]$          | 56.60               | 20.92                |
| $arphi_6$   | $P_{\geq=0.7}[Fxq0]$        | 63.38               | 24.97                |
| $arphi_7$   | $P_{>0.7}[Gxq0]$            | 56.29               | 24.94                |
|             |                             | 53.40               | 22.57                |

## What EAU can do for You

Reason about strategic obligations

$$\varphi = \otimes [\alpha \pi \text{-stit: } P_{>0.75} [\neg \diamond s = 4]]$$

Verify strategic behaviors

$$m \models [\alpha \ \pi\text{-stit:} \Box \ (\theta \in [72^{\circ}\text{-}108^{\circ}])]$$

$$m \models \neg \otimes [\alpha \pi - stit: \Box (\theta \in [72^{\circ} - 108^{\circ}])]$$

## Outline

- How much of the presentation should be motivation for the use of deontic logic? Probably ~1/3 - it's CAV, after all
- Follow deontic logic motivation with EAU syntax stuff
- Then introduce the strategic stit
- If there were any problems earlier given that need s-stit to solve, then solve them with s-stit
- Discuss size of DAC-MDPs, cart-pole, and empirical results